

Green & Environmental Audit

Certificate of Completion

CONTROVA !

This is to certify that

Gharda Institute of Technology, Lavel

Tal. Khed, Dist. Ratnagiri, pin 415708.

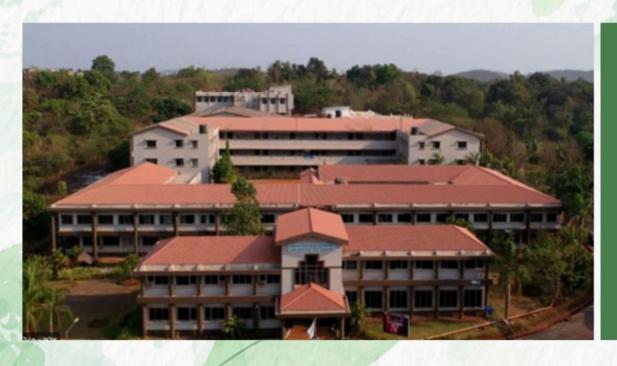
Has successfully completed Green & Environmental Audit by Department of Technology, Shivaji University, Kolhapur

16/03/2022

Co-ordinator

Environmental Science and Technology
Department of Technology

Director


Department Of Technology Shivaji University, Kolhapur

Kolhapur - 415 004, Maharashtra (India) Tel.: 0231-2609413 E-mail: director.tech@unishivaji.ac.in

Green and Environmental Audit Report

Gharda Institute of Technology, Lavel

2022

Internal Quality Assurance Cell (IQAC)

Department of Technology Shivaji University, Kolhapur

(Approved by DET Govt. of Maharashtra & AICTE)

Kolhapur - 415 004, Maharashtra (India) Tel.: 0231-2609413 E-mail: director.tech@unishivaji.ac.in

No.DOT/Consultancy & Testing Cell/

Date: 16/03/2022

To,

The Principal,

Gharda Institute of Technology, Lavel,

Tal- Khed,

Dist-Ratnagiri, PIN-415708

Sub: Regarding Green Audit of your institute.

Ref: Your P.O. dated 06 / 01 /2022.

Dear Sir,

Thank you for your proposal for Green Audit of your institute. As per the P.O. we have completed the task of Green & Environmental Audit through our team as under:

- Water Management Audit of every building.
- Waste Water Management guidelines.
- Solid Waste Management scenario & suggestions.
- · Potential of Rain Water Harvesting.
- Present Plantation & Green belt stretch report.

Our Audit team has scrutinized all the details of Green Audit during visit of our team during 11th -13th February 2022.

The detailed report of the audit is enclosed herewith.

Yours faithfully,

Director,

Department of Technology, Shivaji University Kolhapur.

Department of Technology Shivall University, Kolhapur

CONSULTANCY & TESTING CELL

Department of Technology,

Shivaii University. Kolhanur (Maharashtra).

INDEX

CHAPTER NO.	CONTENTS	PAGE NO.
1	Introduction of Green Audit	3
2	About the Institute	6
3	Water Management	8
4	Wastewater Management	14
5	Solid Waste Management	19
6	E-waste Management	22
7	Tree Plantation	28
8	Biological Diversity at Campus	32
9	Renewable Energy Resources	38
10	Initiatives and Awards	41-46

CHAPTER 1 INTRODUCTION

1 Introduction

• General Introduction of Green and Environmental Audit

Green Audit is a process of systematic identification, quantification, recording, reporting and analysis of components of environmental diversity of various establishments. It aims to examine environmental practices within the premises of the concerned sites, which will have an impact on the eco-friendly atmosphere.

Sustainability is becoming an integral part of the global resource management technique. Evaluation of impacts on the natural resources within the premises due to routine activities of the organization. Environmental audit is systematic documented and objective oriented approach to verify the evidences pertaining to various environmental aspects.

• Objectives:

- 1. To recognize the initiative taken by organization towards environment.
- 2. To provide a healthy environment in campus
- 3. To enhance awareness towards environmental guidelines and responsibilities.
- 4. To identify cost saving methods through minimizing and effectively managing waste.

• Green /Environmental Audit Process:

Audit process at campus is in three phases:

a) Pre-audit activity, b) Audit and c) Action Plans and Recommendations

The green/Environmental audit practically involves examine different components like water management, Solid/E-waste waste management, Waste water treatment and reuse of water, use of renewable sources and biological diversity at campus. Towards better and better performance for the sustainable development of the organization.

Introduction of Gharda Institute of Technology (GIT), Lavel.

Gharda Institute of Technology is the dream project of "Padmashree Dr. Keki H. Gharda", a successful businessman, internationally acclaimed scientist, visionary and a great lover of books & education. To offer quality education at an

affordable cost under the banner of Gharda Foundation, Dr. Gharda conceived an ambitious project of GIT, at a scenic location of Lavel in Ratnagiri district of Maharashtra for the benefit of ambitious and intelligent students of rural region, aspiring to become engineers. Gharda Institute of Technology (GIT) is located around 230 Km from Mumbai in a village called Lavel, 1 Km off Mumbai - Goa Road. It can be reached by train from Khed railway station (13 Km) or Chiplun railway station (17 Km). It is situated in the midst of nature surrounded by greenery and waterfalls and there is sparse population in nearby areas. Gharda Institute of Technology has a huge campus with a good hostel accommodation facility for both boys and girls. Different buildings are assigned for different departments. There is a huge and well equipped library with all books available. All the classrooms have a good ventilation system.

There are 3 hostels on campus: one for all the girls, one for first year (boys) and one for remaining 3 years (boys). The hygiene of hostels is well maintained. The Institute has residential facility separately for Boys and Girls students. It accommodates 530 Boys and 220 Girls students in three hostels. The total land area of the campus is 63.19 acre and total numbers of students are 1091.

GREEN AUDIT COMMITEE				
1	Er. S. M. Bhosale	Head, Environmental Sci. & Tech. Dept.		
2	Er. A. A. Kulkarni	Asst. Prof., Environmental Sci. & Tech. Dept.		
3	Dr. G. S. Kulkarni	Research Professor, Environ. Sci. & Tech.		

CHAPTER 2 ABOUT THE INSTITUTE

2 About the Institute

Total Campus top view (Source: Google Earth)

Top View of Wings: A, B, C, D, E (Source: Google Earth)

Students Intake Details

Sr. No	Year	Course	Intake	16-17	17-18	18-19	19-20	20-21	21-22
1	F.E.	CHEM. ENGG.	60+3	46	36	27	32	29	37
2	S.E.	CHEM. ENGG.	60	48	70	65	71	74	73
3	T.E.	CHEM. ENGG.	60	64	48	63	75	69	74
4	B.E.	CHEM. ENGG.	60	62	68	62	67	66	68
5	F.E.	CIVIL ENGG.	60+3	57	40	15	17	26	21
6	S.E.	CIVIL ENGG.	60	74	78	68	82	72	66
7	T.E.	CIVIL ENGG.	60	81	84	68	78	84	72
8	B.E.	CIVIL ENGG.	60	95	86	62	70	69	85
9	F.E.	COMP. ENGG.	60+3	40	44	57	70	53	69
10	S.E.	COMP. ENGG.	60	28	55	69	73	72	77
11	T.E.	COMP. ENGG.	60	28	31	61	68	72	72
12	B.E.	COMP. ENGG.	60	55	31	45	49	63	71
13	F.E.	EXTC. ENGG.	60+3	22	36	08	10	33	21
14	S.E.	EXTC. ENGG.	60	26	28	22	23	16	44
15	T.E.	EXTC. ENGG.	60	45	34	38	40	27	16
16	B.E.	EXTC. ENGG.	60	71	46	29	31	36	27
17	F.E.	MECH. ENGG.	60+3	56	47	21	28	29	17
18	S.E.	MECH. ENGG.	60	75	79	72	80	51	57
19	T.E.	MECH. ENGG.	60	79	84	69	73	73	51
20	B.E.	MECH. ENGG.	60	69	89	70	80	72	73
21	T.E.	IT. ENGG.	60	03	02	00	00	00	00
22	B.E.	IT. ENGG.	60	12	05	00	00	01	00
			Boys +Girls	871+265	891+230	752+239	846+271	834+253	852+239
		Total		1136	1121	991	1117	1087	1091

Teaching & Non-Teaching Staff Details (Year wise)

Sr.	Teaching staff	16-17	17-18	18-19	19-20	20-21	21-22
No							
1	APPLIED SCIENCE & HUMANITIES	11	11	12	10	11	11
2	CHEMICAL ENGG.	12	13	10	09	11	11
3	MECHANICAL ENGG.	14	14	10	10	10	10
4	COMPUTER ENGG.	14	15	09	11	10	10
5	EXTC. ENGG	14	14	13	10	10	10
6	CIVIL ENGG.	10	13	12	11	11	11
Gents +	Ladies	58+17	63+17	59+7	54+7	55+8	56+7
	Total	75	80	66	61	63	63
Sr.	Technical staff	16-17	17-18	18-19	19-20	20-21	21-22
1	APPLIED SCIENCE & HUMANITIES	01	01	01	01	01	01
2	CHEMICAL ENGG.	04	04	04	04	04	04
3	MECHANICAL ENGG.	07	07	07	05	05	06
4	COMPUTER ENGG.	05	05	05	05	05	05
5	EXTC. ENGG	04	04	03	03	03	03
6	CIVIL ENGG.	02	03	03	02	02	02
Gents +		20+03	21+03	21+02	19+01	19+01	20+01
	Total	23	24	23	20	20	21
Sr. No	General Administration	16-17	17-18	18-19	19-20	20-21	21-22
1	General Administration	23	26	22	26	24	23
Sr. No	Contractual Persons	16-17	17-18	18-19	19-20	20-21	21-22
1	Contractual Persons	60	60	58	55	52	52
	Num	ber of w	orking d	avs			
Sr. No	, tum	16-17	17-18	18-19	19-20	20-21	21-22
1	Number of working days	296	284	291	295	297	286

Area occupied by various buildings at GIT, Lavel

Institute Building					
Sr. No	Name of Building	Built up Area(Sq.m)			
1	'A' Wing	1235.00			
2	'B' Wing	4838.00			
3	'C' Wing	5774.00			
4	Workshop	1480.00			
5	Strength of Material Lab.	225.00			
6	Library	1299.00			
7	Canteen	313.00			
8	Canteen Extension	80.00			
9	Security Cabin	12.45			
10	Snack Center	64.00			
11	D.G. Room	45.91			
	Institute Building Total	15366.36			
	Residential Building	5			
1	Boys Hostel-I	4500.00			
2	Boys Hostel-II	3410.00			
3	Girls Hostel-I	3350.00			
4	Principle Bungalow	155.00			
5	2 BHK Staff Quarter-I	1020.00			
6	1 BHK Staff Quarter-I	690.00			
7	1 BHK Staff Quarter-II	690.00			
	Residential Building Total 13815.00				
	Other Work				
1	Under Ground Water Tanks	3 Lakh Liters			
2	Over Head Water Tanks	2.40 Lakh Liters			

	Hostel details					
Sr. No	Name of Building	Area (Sq.m)	No. of Floors	Total Rooms (Nos.)	Total Capacity (Nos.)	
1	Boys Hostel-I (Shivneri)	4500.00	G+2	86	297	
2	Boys Hostel-II (Raigad)	3410.00	G+2	85	240	
3	Girls Hostel-I (Ajinkyatara)	3350.00	G+2	74	220	
	Total 757					

Top View of Hostels & Guest House (Source: Google Earth)

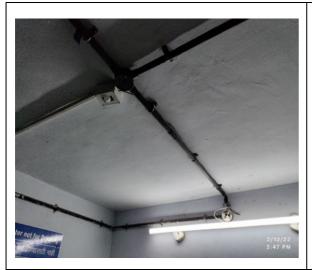
Drone view of hostel buildings and ground at GIT, Lavel

CHAPTER 3 WATER MANAGEMENT

3 Water Management

Buildings and water storage capacitys at GIT, Lavel campus

Sr. No	Location	No. of Tank	Capacity in Ltr.	
1	'B' Wing	2×2000	4000	
2	'C' Wing	2×5000	10000	
3	Workshop	1×2000	2000	
4	Library	1×2000	2000	
5	Civil	1×2000	2000	
6	UG Tank near 'B' Wing	1×35000	35000	
7	Snack Center	1×2000	2000	
8	Boys Hostel-I (Shivneri)	6×2000 3×500	12000 1500	
9	Boys Hostel-II (Raigad)	6×5000 3×500	30000 1500	
10	Girls Hostel-I (Ajinyatara)	4×2000 4×5000 3×500	8000 20000 1500	
11	Principle Bungalow	1×2000	2000	
12	2 BHK Staff Quarter-I	4×2000	8000	
13	1 BHK Staff Quarter-I	4×2000	8000	
14	1 BHK Staff Quarter-II	4×2000	8000	
15	1 BHK Staff Quarter-III	1×10000	10000	
16	Attach Room Building	1×2000	2000	
17	ValmikiChal	1×2000	2000	
18	Main Under Ground Water Tank	1×300000	300000	
19	Over Head Water Tank	1×240000	240000	
	Total water storage Capacity in Ltr.			

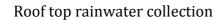

Rainwater Harvesting

Rainwater harvesting is a technology mainly divided in two types surface rainwater harvesting and rooftop rainwater harvesting. Rainwater harvesting is the collection and storage of rain, rather than allowing it to run off. (runoff is nothing more than water "running off" the land surface) Rain water is the purest form of water available to us in the nature only for a few months in a year.

Sr. No	Description	Details
1	The coefficient of permeability (K) in soil sample of GIT rainwater harvesting pit	3.093*103 cm/sec
2	Length of pit	34 M
3	Width of pit	18 M
4	Height of pit	3.4 M
5	Total catchment Area of pit	612 Sq.M
6	The capacity of rain harvesting pit	20,80,612 Lit.
7	Total seepage loss in our GIT pit in terms of litres	1.041 lit/sec
8	Percentage of seepage loss in Pit	21.85%
9	Total catchment area of roof in GIT campus	4098 Sq.M
10	The annual rainfall in Kankan belt	4082

Rooftop rainwater harvesting collection tank

Civil Engg. Dept. toilet water censer installation



Water Pond

Sprinkler system for Lawn

Roof top rainwater down take pipe

Observations:

Two wells are main water sources for GIT, Lavel campus. Water lifted from wells by 7.5 HP pumps through intermediate pumping station up to main underground water tank having 30,0000 Lit. capacity. Water is lifted by another 7.5 HP Pump in ESR 240000 Ltr. Capacity which is distribution reservoir for campus. Separate team is assigned for water distribution operation at campus.

In summer season when there will be shortage of water in source wells, water tankers are hired by GIIT, Authorities as per requirements. Water quality of hired tankers are tested randomly.

For Fire disaster management system around institutional campus, separates water tank is provided by institute. Water conservation awareness slogans are placed at bathroom and toilets at each floor.

Water testing is done by Chemical & Civil Engg. department for samples of campus as well as tanker water in summer season.

Recommendations:

Attention towards Roof top rain water harvesting system (down take pipe + rain water collection gutters) for hostel building for surface water harvesting at downstream side of hostel area.

CHAPTER 4 WASTEWATER MANAGEMENT

4

Wastewater Management

Wastewater Treatment Plant

Location: Behind Girls Hostel

Bio-filter Plant

Sprinklers in bio bed before and after treatment view

Utilization of water after wastewater treatment for Banana and Papaya Plantation.

Wastewater Treatment Plant				
Installed Plant Capacity 30 KLD				
Treated water is used for banana and papaya plantation.				

Observations:

Wastewater from "Ajinkyatara" (girl's hostel) is collected in sump near Bio filter plant and treated water from bio filter technology is used for banana and papaya plantation.

Wastewater from Raigad and Shivneri (boy's hostel) is collected in sump near Bio filter plant and treated water from bio filter technology used for plantation on downstream side of plantation.

Wastewater from institutional wings is collected in sump near main gate parking area of GIT, Campus and partially treated water is used for coconut plantation.

Recommendations:

Special attention is required towards wastewater treatment from institutional wings near main gate like alternative options like constructed wetland.

CHAPTER 5 SOLID WASTE MANAGEMENT

5

Solid Waste Management BIO-FERTILIZER (BIO-COMPOSTING)

Application of Organic Waste Converter for segregated biodegradable waste from different sources like canteen, boys and girls hotel mess of Gharda Institute of Technology, Campus. Composting is the best method to convert this organic waste and this resultant product is called as manure, which is an excellent fertilizer utilize for plantation at campus.

For this process we required saw dust and the solid waste such as kitchen waste, canteen waste etc. The two chemicals used in this processes are Bioculum and Sanitreat. Sanitreat is used to control the putrefaction (decay) process of organic waste materials and Bioculum is used for accelerates the aerobic composting of bio degradable organic waste. It also treats the waste and makes it free from pathogens, foul smells and weed seeds. Specifications for both are as follows:

• Sanitreat is herbal and mineral mixture that is a nontoxic and environmentally safe way to sanitization. It is highly effective over both segregated and desegregated organic waste. Sanitreat retards the formation of toxic leachates and gases; it is able to make organic garbage stink free in just a few minutes.

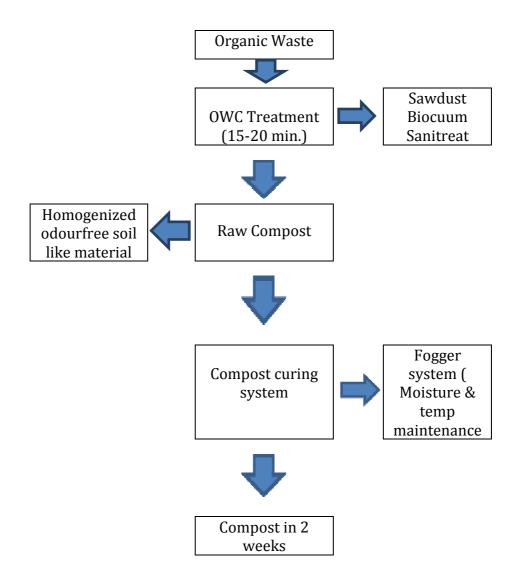
Formulation

 Sanitreat is a free flowing light brown powder. It is a non-hazardous mixture of mineral and herbal components that control the putrefaction process of organic waste materials. It retards the formation of toxic leachates and gases which results in the rapid control of odor.

Application

Powder should be sprayed dry over the waste using a powder sprayer. No special handling precautions are required. But it is recommended that operators wear gloves. Application rates vary depending on the organic content of the waste, climatic conditions and age of the waste. About 1.5 to 2 kgs. is sufficient to cover 1 Metric Ton of the waste. The dose is indicative of likely application rates, but trials are recommended.

Bioculum is a mixture of microorganism cultures that accelerate the aerobic composting of bio degradable organic waste. It also treats the waste and makes it free from pathogens, foul smells and weed seeds.


Bioculum is a key input in the OWC process and consists of cultures of naturally occurring bacteria, fungi and actinomycitis along with enzymes. These facilitate the rapid conversion of organic waste into bio stabilized compost. It is free from any toxic or hazardous components. It preserves the vital nutrients and organic matter in the waste.

Applications

Proper treatment of Organic Waste using Bioculum converts it into a rich source of stable organic manure that can be used as a Bio Organic enricher.

Input	Segregated Organic Waste
Model	OWC 60
Capacity	5 Kg
Batch time	10-15 Minutes
Power	2.5 HP

Organic Waste Converter				
Installed Plant Capacity	100 Kg			
Food waste converted into manure.				

Natural process of composting duration	2 to 3 Months
OWC process of composting duration	10 to 15 days

Observations:

Biodegradable solid waste collected from canteen, boys and girl Hostel Mess and snack spot is used in organic waste converter plant. Less time required for composting by OWC process.Biodegradable and non-biodegradable sign boards for bins.

Recommendations:

Further segregation of non-biodegradable waste should be done. Awareness programme to reduce single use plastic free campus. Attention towards scrap material storage arrangement in proper way.

Measurement of solid waste

Sign boards segregation of waste

OWC

Process Chart

Waste to recourse

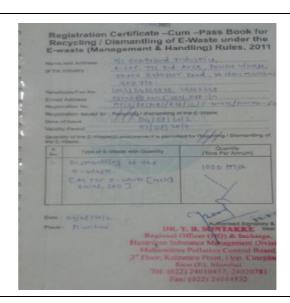
Waste to recourse

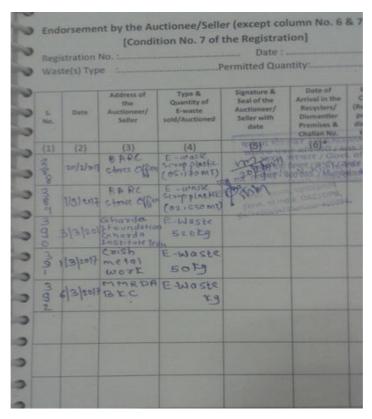
CHAPTER 6

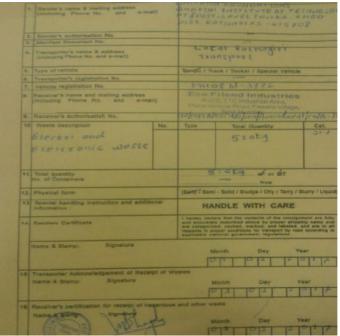
E-WASTE MANAGEMENT

6

E-Waste Management







Observations:

Separate E-waste storage collection and handover to treatment MPCB/CPCB authorized waste disposable agency.

Recommendations:

Awareness campaign for E-waste segregation from solid waste

CHAPTER 7 TREE PLANTATION

7 Tree Plantation

Sr. No	Location	Area
1	Garden	03 Acre
2	Mango Plantation	05 Acre
3	Amala Plantation	20 Guntha
4	Ramphal Plantation	10 Guntha
5	Coconut Plantation	01 Acre
6	Banana Plantation	20 Guntha
7	Cashew Plantation	01 Acre
8	Teak Wood	10 Guntha
9	Wild Trees	02 Acre

Plantation Map (Lawn+Tree)

TREE DIVERSITY OF GIT CAMPUS

Sr. No	Common Name	Family	Botanical Name	Total
1	Coconut	Arecaceae	Cocosnucifera	53
2	Mango	Anacardiaceae	Mangiferaindica	152
3	Cashew	Anacardiaceae	Anacardiumoccidentale	61
4	Amla	Phyllanthaceae	Phyllanthusemblica	02
5	RaiAmla	Phyllanthaceae	Phyllanthusacidus	15
6	BanarasiAmla	Phyllanthaceae	Phyllanthusemblica	11
7	Gulmohar	Fabaceae	DelonixRegia	84
8	Kanchan	Fabaceae	Bauhinia variegata	02
9	Sonchafa	Magnoliaceae	Magnolia champaca	13
10	Christmas tree	Araucariaceae	Araucaria columnaris	03
11	Indian bael	Rutaceae	Aeglemarmelos	04
12	Bamboo	Poaceae	Bambusa vulgaris	03
13	Jambhul	Mirtaceae	Syzygiumcumini	05
14	Kadilimb	Meliaceae	Azadirachtaindica	04
15	Umbar	Meliaceae	Ficusracemosa	01
16	Jackfruit	Meliaceae	Artocarpusheterophyllus	07
17	Lythraceae	Lythraceae	Lagerstroemia speciosa	
18	Suru	Casuarinaceae	Casuarinaequisetifolia	
19	Payer	Moraceae	Ficusarnottiana	04
20	Peru	Myrtaceae	Common guava	07
21	Banana	Musaceae	Musa	22
22	Ficus Panda	Moraceae	Ficusbenjamina	
23	Pipal	Moraceae	Ficusreligiosa	
24	Kachaghara	Fabaceae	Terminaliaelliptica 02	
25	Banyan	Moraceae	Ficusbenghalensis 06	
26	Parijat	Oleaceae	Nyctanthes arbor-tristis 07	
27	Karanj	Fabaceae	Millettiapinnata 06	
28	Kokum	Clusiaceae	Garciniaindica	02

TREE DIVERSITY OF GIT CAMPUS

Sr. No	Common Name	Family	Botanical Name	Total
29	Rubber	Euphorbiaceae	Hevea brasiliensis	03
30	Rain tree	Fabaceae	Samaneasaman	10
31	Badam	Combretaceae	Terminaliacatappa	01
32	Tamalpatra	Lauraceae	Cinnamomumtamala	05
33	Chikku	Sapotaceae	Manilkarazapota	05
34	Ramfal	Annonaceae	Annonareticulata	06
35	Teak Wood	Lamiaceae	disambiguation	06
36	Bamboo	Poaceae	Dendrocalamusstrictus	23
37	Devchafa	Apocynaceae	Plumeriaacutifolia	10
38	Cherry	Rosaceae	Prunusavium	09

Along with above species following tree diversity at GIT, Campus

Limb	04
Peltraform	04
Cori chafa	01
Goban Vel	27
Nag chafa	02
Circus Palm	68
Bond Palm	41
Salwin	08
Niv	04

Nakshatra Garden

Green Team: Men at Work

Green Campus

CHAPTER 8 BIOLOGICAL DIVERSITY AT CAMPUS

8

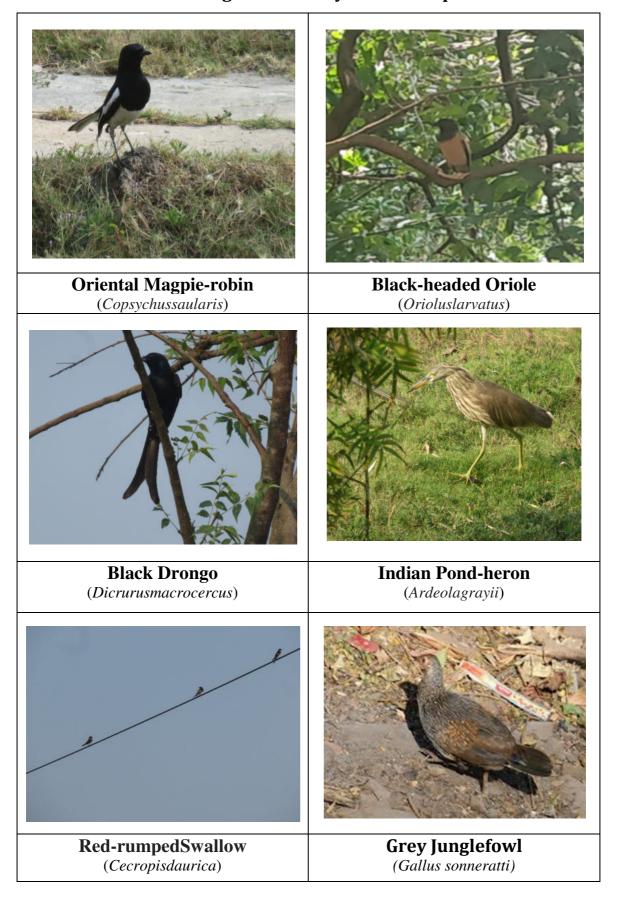
Biological Diversity at GIT Campus

Malabar Pied Hornbill (Anthracoceroscoronatus)

Three-striped Palm Squirrel
(Funambuluspalmarum)

Small Indian Civet (*Viverriculaindica*)

Russell's Viper (Daboiarusselii)



 $\begin{array}{c} \textbf{Red-vented Bulbul} \\ \textit{(Pycnonotuscafer)} \end{array}$

Bengal Monitor Lizard (Varanusbengalensis)

Biological Diversity at GIT Campus

CHAPTER 9 RENEWABLE ENERGY RESOURCES


9 Renewable Energy Resources

	Hostels details					
Sr. No	Name of Building	Area (Sq.M)	No. of Floors	Total Rooms (Nos)	Total Capacity (Nos)	
1	Boys Hostel-I (Shivneri)	4500.00	G+2	86	297	
2	Boys Hostel-II (Raigad)	3410.00	G+2	85	240	
3	Girls Hostel-I (Ajinyatara)	3350.00	G+2	74	220	
				Total	757	
Solar Water Heating System in Hostel						
Sr.	Name of Building	Capacity in Liters				
No						

Solar water Heater at hostel

Hostel top solar light view

Hostel top solar light view

Solar Street light view

Solar Street light view

Workshop roof top

Solar panel assembly

CHAPTER 10 INITIATIVES AND AWARDS

10
Initiatives and Awards

EXPENDITURE ON GREEN INITIATIVES DURING THE LAST FIVE YEARS

Stores and Purchase Department

Year	Garden tree plant purchase (Amount in Rs.)	Drip System (Amount in Rs.)	LED Tube/Bulb (Amount in Rs.)
2014	Nil	3,17,447/-	Nil
2016	5,348/-	Nil	Nil
2018	21,810/-	Nil	Nil
2019	Nil	Nil	90,825/-
2021	16,534/-	Nil	1,39,900/-

Our Campus......Green Campus.....